Lecture 01: Mathematical Basics (Summations)

What I am Assuming

- I am assuming that you know asymptotic notations. For example, the big-O, little-O notations
- Let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} 1
$$

- It is trivial to see that $S=n$
- Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} i
$$

- We can prove that $S=\frac{n(n+1)}{2}$
- How do you prove this statement? (Use Induction? Use the formula for the Sum of an Arithmetic Progression?)
- Using Asymptotic Notation, we can say that $S=\frac{n^{2}}{2}+o\left(n^{2}\right)$
- Now, let us try to write a closed form expression for the following summation

$$
S=\sum_{i=1}^{n} i^{2}
$$

- We can prove that $S=\frac{n(n+1)(2 n+1)}{6}$
- Why is the expression on the right an integer? (Prove by induction that 6 divides $n(n+1)(2 n+1)$ for all positive integer n)
- How do you prove this statement? (Use Induction?)
- Using Asymptotic Notation, we can say that $S=\frac{n^{3}}{3}+o\left(n^{3}\right)$
- Do we see a pattern here?
- Conjecture: For $k \geqslant 1$, we have $\sum_{i=1}^{n} i^{k-1}=\frac{n^{k}}{k}+o\left(n^{k}\right)$.
- How do we prove this statement?
- Let f be an increasing function
- For example, $f(x)=x^{k-1}$ is an increasing function for $k>1$ and $x \geqslant 0$

Estimating Summations by Integration II

Estimating Summations by Integration III

- Observation: "Blue area under the curve" is smaller than the "Shaded area of the rectangle"
- Blue area under the curve is:

$$
\int_{x-1}^{x} f(t) d t
$$

- Shaded area of the rectangle is:

$$
f(x)
$$

- So, we have the inequality:

$$
\int_{x-1}^{x} f(t) d t \leqslant f(x)
$$

- Summing both side from $x=1$ to $x=n$, we get

$$
\sum_{x=1}^{n} \int_{x-1}^{x} f(t) d t \leqslant \sum_{x=1}^{n} f(x)
$$

Estimating Summations by Integration IV

- The left-hand side of the inequality is

$$
\int_{0}^{1} f(t) \mathrm{d} t+\int_{1}^{2} f(t) \mathrm{d} t+\cdots+\int_{n-1}^{n} f(t) \mathrm{d} t=\int_{0}^{n} f(t) \mathrm{d} t
$$

- So, for an increasing f, we have the following lower bound.

$$
\begin{equation*}
\int_{0}^{n} f(t) \mathrm{d} t \leqslant \sum_{x=1}^{n} f(x) \tag{1}
\end{equation*}
$$

Estimating Summations by Integration V

- Now, we will upper bound the summation expression. Consider the figure below

Estimating Summations by Integration VI

- Observation: "Blue area under the curve" is greater than the "Shaded area of the rectangle"
- So, we have the inequality:

$$
\int_{x-1}^{x} f(t) d t \geqslant f(x-1)
$$

- Now we sum the above inequality from $x=2$ to $x=n+1$
- We get

$$
\int_{1}^{2} f(t) \mathrm{d} t+\int_{2}^{3} f(t) \mathrm{d} t+\cdots+\int_{n}^{n+1} f(t) \mathrm{d} t \geqslant f(1)+f(2)+\cdots+f(n)
$$

- So, for an increasing f, we get the following upper bound

$$
\begin{equation*}
\int_{1}^{n+1} f(t) d t \geqslant \sum_{x=1}^{n} f(x) \tag{2}
\end{equation*}
$$

Theorem

For an increasing function f, we have

$$
\int_{0}^{n} f(t) d t \leqslant \sum_{x=1}^{n} f(x) \leqslant \int_{1}^{n+1} f(t) d t
$$

Exercise:

- Use this theorem to prove that $\sum_{i=1}^{n} i^{k-1}=\frac{n^{k}}{k}+o\left(n^{k}\right)$, for $k \geqslant 1$
- Consider the function $f(x)=1 / x$ to find upper and lower bounds for the sum $H_{n}=1+\frac{1}{2}+\cdots+\frac{1}{n}$ using the approach used to prove Theorem 1

Differentiation and Integration

- Differentiation: $f^{\prime}(x)$ represents the slope of the curve $y=f(x)$ at x
- Integration: $\int_{a}^{b} f(t) \mathrm{d} t$ represents the area under the curve $y=f(x)$ between $x=a$ and $x=b$
- Increasing function:
- Observation: The slope an increasing function is positive
- So, " f is increasing at x " is equivalent to " $f^{\prime}(x)>0$," i.e. f^{\prime} is positive at x
- Suppose we want to mathematically write "Slope of a function f is increasing"
- The "slope of a function f " is the function " f ""
- So, the statement "slope of a function f is increasing" is equivalent to " $\left(f^{\prime}\right)^{\prime} \equiv f^{\prime \prime}$ is positive"

Concave Upwards Functions

Definition (Concave Upwards Function)

A function f is concave upwards in the interval $[a, b]$ if $f^{\prime \prime}$ is positive in the interval $[a, b]$.

- Example of functions that concave upwards: $x^{2}, \exp (x), 1 / x$ (in the interval $(0, \infty)$), $x \log x$ (in the interval $(0, \infty)$)
- We emphasize that a "concave upwards" function need not be increasing, for example $f(x)=1 / x$ (for positive x) is decreasing
- Consider the coordinates $(x-1, f(x-1))$ and $(x, f(x))$
- For a concave upwards function, the secant between the two coordinates is always (on or) above the part of the curve f between the two coordinates

- So, the shaded area of the trapezium is greater than the blue area under the curve

- So, we get

$$
\frac{f(x-1)+f(x)}{2} \geqslant \int_{x-1}^{x} f(t) \mathrm{d} t
$$

- Now, use this new observation to obtain a better lower bound for the sum $\sum_{x=1}^{n} f(x)$
- Think: Can you get even tighter bounds?
- Additional Reading: Read on the "trapezoidal rule"

Estimating Products

- Consider the objective of estimating n ! using elementary functions
- Note that one can convert this estimation of products into estimation of sums by taking log. For example,

$$
\ln (n!)=\sum_{i=1}^{n} \ln (i)
$$

- Now, one can tightly upper and lower bound the expression $\sum_{i=1}^{n} \ln (i)$. Use the techniques in the previous slides to obtain meaningful upper and lower bounds of this expression. Suppose

$$
L_{n} \leqslant \sum_{i=1}^{n} \ln (i) \leqslant U_{n}
$$

- Therefore, one concludes that

$$
\exp \left(L_{n}\right) \leqslant n!\leqslant \exp \left(U_{n}\right)
$$

Estimating Fractions

- Consider the objective of estimating a fraction A_{n} / B_{n}
- Suppose we have $A_{n} \leqslant U_{n}$ and $L_{n}^{\prime} \leqslant B_{n}$. Note that

$$
\frac{1}{B_{n}} \leqslant \frac{1}{L_{n}^{\prime}} .
$$

- Note that multiplying with $A_{n} \leqslant U_{n}$, one gets that

$$
\frac{A_{n}}{B_{n}} \leqslant \frac{U_{n}}{L_{n}^{\prime}} .
$$

- To summarize, upper-bounding a fraction involves upper-bounding the numerator and lower-bounding the denominator
- Analogously, if $L_{n} \leqslant A_{n}$ and $B_{n} \leqslant U_{n}^{\prime}$, then we get $\frac{L_{n}}{U_{n}^{\prime}} \leqslant \frac{A_{n}}{B_{n}}$
- Food for thought. Provide meaningful upper and lower bound the expression $\binom{2 n}{n}:=\frac{(2 n)!}{(n!)^{2}}$.

